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1 Calculating the solution to Poisson equation using a periodic arrangement of resistive 

elements   

It has been described in the main text how a network of lumped elements such as resistors can be 

used to calculate solutions to the Poisson equation. This is done by emulating the performance of 

a finite difference grid in a simulation space, shown in40,41,59. For completeness, here we provide 

a brief explanation of this method and derive Eq. 1 from the main text. For further details we refer 

the readers to40,41,59. The structure to solve Poisson equation consists of a periodic arrangement of 

junctions between lumped elements arranged in a square lattice40,41,59 (see Fig. S1a). Each junction 

is connected to four adjacent junctions by a lumped element with an impedance value 𝑍𝐿, in this 

way forming a grid-like network. When an external voltage source is applied to one of the 

boundaries of the network, electric currents will flow through the junctions of the network. These 

currents will then split at each junction based upon the voltages at the junctions and the impedance 

values of the lumped elements. If 𝑉0 is the voltage at a center junction and 𝑉𝑎 is the voltage value 

at the adjacent junctions, where 𝑎 = 1, 2, 3, 4 represents the top, right bottom, and left junctions, 

respectively, the current flowing into the center junction from each of the adjacent junctions is 

found by using Ohms Law40,41,59: 

 



 
𝐼𝑎 =

𝑉𝑎 − 𝑉0

𝑍𝑎
 

(S1) 

where, 𝐼𝑎 is the current from junction 𝑎 and 𝑍𝑎 is the impedance value separating junction 𝑎 from 

the center junction. The equation governing the voltage distribution of the network can then be 

found by considering Kirchhoff’s laws64,76 at the junction (∑ 𝐼𝑎𝑎 = 0), substituting Eq. S1. 
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(S2) 

Eq. 1 from the main text can then be obtained from Eq. S2 for the special case where each of the 

connected impedance values are the same (i.e., 𝑍𝑎 = 𝑍𝐿). Importantly, any junction which is fully 

surrounded by adjacent junctions must conform to Eq. S2, as one could relabel any such junction 

as the center junction 0 

 

 
Fig. S1.  Grid of interconnected impedances. (a), Schematic representation of the network and (b), unit cell 

 

  



2 Metatronic circuits in parallel configuration: solution to the Helmholtz equation 

As mentioned in the main text, it is also possible to construct a PDE solving structure by instead 

exploiting waveguide-based metatronic circuits connected in the parallel configuration. To do this, 

the structure is modified such that the metatronic circuits emulate a Π-circuit instead of the T-

circuit discussed in the main text. Additionally, due to the change in configuration, in this scenario 

the solution to the PDE is now extracted by looking at the out-of-plane 𝐸𝑧-field (and hence voltage 

value), measured at the center of the junctions.  

A schematic representation of this scenario is presented in Fig. S2a where the circuit model 

of a section of the hypothetical PDE solving structure is shown. It consists of Π-circuits 

connected at parallel junctions. As in Fig. 1a from the main text, the junctions are arranged in 

a square lattice with each junction connecting to four adjacent junctions, now via a Π-circuit. 

The voltages at the adjacent and center junctions are 𝑉𝑎 and 𝑉0 respectively, with 𝑎 = 1,2,3,4 

representing the top, right, bottom and left connections, respectively. By looking into one of 

the Π-circuits connected to the center junction, one can calculate an incoming/outgoing current 

at the center junction (junction 0) as 𝐼𝑎 = (𝑉𝑎 − 𝑉0) 𝑍𝑠⁄ − 𝑉0 𝑍𝑝⁄ , where 𝑍𝑠 and 𝑍𝑝 are now the 

series and parallel impedance values in the metatronic Π-circuit. The equation governing the 

voltage distribution of the network is then found by considering Kirchhoffs current law76 at the 

center junction ∑ 𝐼𝑎
4
𝑎 = 0. 

 

 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 − 4𝑉0

𝑍𝑠
−

4

𝑍𝑝
𝑉0 = 0 

(S3) 

By comparing Eq. S3 to the finite difference representation of the Helmholtz equation 

presented in Eq. 3 of the main text, one can see that the two are analogous if the impedance 

values are selected so that 𝑍𝑠 = ℎ2  and 𝑍𝑝 = −4 𝑘2⁄ . As in the main text, a further 



transformation is necessary for this to be strictly valid as 𝑍𝑠  ∈  ℂ while ℎ ∈  ℝ, in this case the 

required transformation is 𝑉′𝑎 = 𝑉𝑎𝑍𝑠
∗ and 𝑉′0 = 𝑉0𝑍𝑠

∗ which may be substituted into Eq. S3, 

obtaining: 

 𝑉′1 + 𝑉′2 + 𝑉′3 + 𝑉′4 − 4𝑉′0

|𝑍𝑠|2
−

4

𝑍𝑝𝑍𝑠
∗

𝑉′0 = 0 
(S4) 

which is analogous to Eq. 3 from the main text if the impedances are now selected such that 

|𝑍𝑠| = ℎ and −4 (𝑍𝑝𝑍𝑠
∗)⁄ = 𝑘2.  

The T-circuit required in the PDE solving structure exploited in the main text was 

implemented using waveguide-based metatronic circuits49,50,51. The same principles are also 

applied here to, instead, implement a metatronic Π-circuit. A schematic representation of the 

structure is presented in Fig. S2b (top panel). The structure is similar to the one used to emulate 

the T-circuit from Fig. 1b of the main text, with three thin dielectric/metallic slabs and 𝜆0 4⁄  

impedance transformers, where 𝜆0  is the wavelength of the incident signal in free space. 

However, in this scenario the first and last 𝜆0 4⁄  segments have been removed from the 

structure. The impedance transform3,50,51 discussed in the main text, is now applied only to the 

center impedance in order to obtain a central series impedance required for the Π-circuit. The 

impedance values of the elements in the Π-circuit are calculated using Eq. 6 and Eq. 7 from the 

main text. 



 
Fig. S2.  PDE equation solving structure using Π-circuits and parallel junctions. (a) Schematic representation of the 

proposed PDE solving structure using Π-circuits and parallel junctions. (b) (Top) Schematic representation of a 

metatronic circuit using dielectric slabs that would be able to implement the proposed Π-circuit. As in Fig. 1b from 

the main text this structure consists of 3 dielectric/metallic slabs (one per circuit element) separated by a distance of 

𝜆0 4⁄ , however now the first and last 𝜆0 4⁄  blocks have been removed. The width in the direction of propagation and 

permittivity values of the dielectric slabs are 𝜀𝑠, 𝜀𝑝 and 𝑤𝑠, 𝑤𝑝, where the subscripts 𝑠 and 𝑝 represent the series and 

parallel elements, respectively. (Bottom) Circuit model of the Π-circuit. 

 

  



3 ABCD matrix method for extracting and optimizing the equivalent impedance value of 

the three-slab structure  

 

As discussed in the main text, to corroborate the performance of the designed T-circuit and to 

extract the emulated impedance values 𝑍𝑠  and 𝑍𝑝 , a full ABCD matrix analysis of the 

waveguide-based structure is performed. When substituting these impedance values into an 

ideal T-circuit, the resulting reflection and transmission coefficients should be the same as those 

using the three-slab structure emulating a T-circuit. However, as discussed in the main text, 

these values were slightly different from the theoretical impedance values produced via Eq. 6 

and Eq. 7 from the main text, due to the non-zero thickness of the dielectric slabs. The method 

followed to extract and optimize these impedance values is discussed in this section.  

To evaluate the performance of the three-slab structure presented in Fig. 1b of the main text, 

a transmission line (TL) model, shown in Fig. S3, is exploited. It consists of seven TLs 

representing the three dielectric/metallic slabs, and four air regions between them. The length 

(along the propagation axis), relative permittivity and characteristic impedances of the TLs 

representing the dielectric/metallic slabs are 𝑤𝑠,𝑝, 𝜀𝑠,𝑝 and 𝑍𝑠,𝑝 = 𝑍0 √𝜀𝑠,𝑝⁄ , respectively, where 

𝑍0 = 120𝜋 Ω is the characteristic impedance of free space and subscripts 𝑠, 𝑝 represent the 

slabs which enable the emulation of the series and parallel circuit elements, respectively. The 

air regions within the waveguides between the dielectric slabs are modeled by TLs filled with 

vacuum (𝜀0, 𝑍0). These TLs have lengths of 𝐿1, 𝐿2, 𝐿3 and 𝐿4, respectively and are all chosen 

to be 𝜆0 4⁄ . As it will be discussed later, these values may be carefully modified when 

optimizing the design to better emulate the performance of an ideal T-circuit with the desired 

𝑍𝑠 and 𝑍𝑝 values.  



The response of the three-slab structure is calculated by exploiting the ABCD matrix 

method [9], in which each individual TL is represented by a single ABCD matrix (Υ). The 

elements for each matrix (𝐴, 𝐵, 𝐶 and 𝐷) are as follows: 

 

 𝐴𝑇𝐿 = cos (𝛽𝑑) (S5a) 

 𝐵𝑇𝐿 = −𝑖𝑍sin (𝛽𝑑) (S5b) 

 
𝐶𝑇𝐿 =

−𝑖

𝑍
sin (𝛽𝑑) 

(S5c) 

 𝐷𝑇𝐿 = cos (𝛽𝑑) (S5d) 

where 𝑍, 𝛽 and 𝑑 are the characteristic impedance, propagation constant and length of the TL, 

respectively. Using Eq. S5, an ABCD matrix is defined for each of the TL segments shown in 

Fig. S3. These matrices are 𝚼1, 𝚼2, 𝚼3, 𝚼4, 𝚼𝑠1, 𝚼𝑠2 and 𝚼𝑝, with 1, 2, 3, 4 as the waveguide 

regions filled with vacuum (𝜆0 4⁄  waveguides) from left to right (see Fig. S3), 𝑠1, 𝑠2 as the left 

and right dielectric slabs that enable the emulation of the series impedances and 𝑝  as the 

dielectric slab emulating a parallel element. As it is known, the overall ABCD matrix of the 

structure is then found by multiplying the respective matrices together in order to produce a 

single ABCD matrix 𝚼𝑇 which describes the total response of the system. 

 

 𝚼𝑇 = 𝚼1𝚼𝑠1𝚼2𝚼𝑝𝚼3𝚼𝑠2𝚼4 (S6) 

The values of the emulated series and parallel impedances 𝑍𝑠, 𝑍𝑝 are found by comparing 

Eq. S6 with the well-known ABCD matrix of a T-circuit3. The ABCD parameters of a T-circuit 

are as follows: 

 

 



 
𝐴𝑇−𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 1 +

𝑍𝑠1

𝑍𝑝
 

(S7a) 

 
𝐵𝑇−𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 𝑍𝑠1 + 𝑍𝑠2 +

𝑍𝑠1𝑍𝑠2

𝑍𝑝
 

(S7b) 

 
𝐶𝑇−𝑐𝑖𝑟𝑐𝑢𝑖𝑡 =

1

𝑍𝑝
 

(S7c) 

 
𝐷𝑇−𝑐𝑖𝑟𝑐𝑢𝑖𝑡 = 1 +

𝑍𝑠2

𝑍𝑝
 

(S7d) 

where 𝑍𝑝, 𝑍𝑠1 and 𝑍𝑠2 are the impedances of the parallel, left series and right series components 

of the T-circuit, respectively. Substituting Eq. 6 and Eq. 7 from the main text into, Eq. S7, the 

ABCD matrix of the ideal T-circuit (𝚼𝑖𝑑𝑒𝑎𝑙 = 𝚼𝑇−𝑐𝑖𝑟𝑐𝑢𝑖𝑡). If the matrix components of 𝚼𝑇 match 

those from 𝚼𝑖𝑑𝑒𝑎𝑙, then it can be said that the metatronic elements are emulating the impedances 

𝑍𝑠1 , 𝑍𝑠2  and 𝑍𝑝  correctly. However, it was found that there was indeed a slight variation 

between these two matrices, and thus also a slight variation in the emulated impedance values. 

The true impedance values emulated by the three-slab structure can then be calculated by 

substituting the ABCD matrix parameters from 𝚼𝑇  into Eq. S7, to construct a series of 

simultaneous equations, which can then be solved for 𝑍𝑠1 , 𝑍𝑠2  and 𝑍𝑝 . The result of this 

calculation was then presented in the section “Emulating T-circuit lumped elements via 

metatronic circuit elements” from the main text. 

 

 

 

 



 
Fig. S3.  Three-slab transmission line model.  Full TL model of the three-slab structure designed to emulate a T-

circuit. TLs 1, 2, 3 and 4 are the four 𝜆0 4⁄  sections while 𝑠1, 𝑠2 and 𝑝 are the dielectric/metallic slabs which enable 

the emulation of the left series, right series, and parallel impedances respectively. Each TL is parameterized by the 

characteristic impedance, permittivity, and length of the TL. TLs 1,2,3 and 4 have the impedance permittivity and 

length values 𝑍0 , 𝜀0  and 𝐿1,2,3,4 , respectively. The TLs representing the dielectric slabs 𝑠1 , 𝑠2  and 𝑝  have the 

impedance, permittivity, and length values 𝑍𝑠1,𝑠2,𝑝, 𝜀𝑠1,𝑠2,𝑝 and 𝑤𝑠1,𝑠2,𝑝, respectively. Connecting to the left and right 

of the structure are the input and output TLs respectively with a characteristic impedance 𝑍0. 

 

For completeness, the ABCD parameters, reflection/transmission coefficients and impedance 

values for the structure discussed in Fig. 1 of the main text are presented in column 2 of Table. S1. 

Here, the desired impedance values of the metatronic elements are 𝑍𝑠1 = 𝑍𝑠2 = −0.9𝑖𝑍0  and 

𝑍𝑝 = 2.5𝑖𝑍0, respectively. Metatronic elements capable of emulating these impedance values are 

then designed using Eq. 6 and Eq. 7 from the main text, with the geometric parameters and EM 

properties as follows: 𝑤𝑠1 = 𝑤𝑠2 = 𝑤𝑝 = 0.2  mm (𝜆0 150⁄  where 𝜆0 = 30  mm), 𝜀𝑠1 = 𝜀𝑠2 =

21.44, 𝜀𝑝 = 9.54 and 𝐿1 = 𝐿2 = 𝐿3 = 𝐿4 = 7.5 mm (𝜆0 4⁄ ). Using these geometric parameters 

( 𝐿1,2,3,4 , 𝑤𝑠1,𝑠2,𝑝 ) and EM properties ( 𝜀𝑠1,𝑠2,𝑝 ), the ABCD matrix components, 

reflection/transmission coefficient and emulated impedance values of the three-slab structure are 

calculated using Eq. S5-S7. These results are shown in the third column of Table. S1. As it can be 

seen, there is a slight difference between the desired impedance values and the emulated 

impedance values. In order to better implement the desired impedance values, an optimization of 

the geometrical parameters (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝑤𝑠1, 𝑤𝑠2, 𝑤𝑝) and EM properties (𝜀𝑠1, 𝜀𝑠2, 𝜀𝑝) of the 

structure is performed to minimize the objective function: 

 

 𝑂(𝑍𝑠1, 𝑍𝑠1
′ , 𝑍𝑠2, 𝑍𝑠2

′ , 𝑍𝑝, 𝑍𝑝
′ ) = |𝑍𝑠1 − 𝑍𝑠1

′ | + |𝑍𝑠2 − 𝑍𝑠2
′ | + |𝑍𝑝 − 𝑍𝑝

′ | (S8) 



where 𝑍𝑠1, 𝑍𝑠2, 𝑍𝑝 are now the emulated impedances of the left series, right series and parallel 

elements calculated for the three-slab structure using Eq. S5-S7 and 𝑍𝑠1
′ , 𝑍𝑠2

′ , 𝑍𝑝
′  are the desired 

impedance values of the left series, right series and parallel elements (i.e. in this example 𝑍′𝑠1 =

𝑍′𝑠2 = −0.9𝑖𝑍0  and 𝑍𝑝 = 2.5𝑖𝑍0). The results, after the optimization to minimize Eq. S8, are 

presented in column 4 of Table. S1. The optimized parameters are: 𝜀𝑠1 =  𝜀𝑠2 = 21.5, 𝜀𝑝 = 12, 

𝑤𝑠1 = 𝑤𝑠2 = 0.2111  mm, 𝑤𝑝 = 0.1741  mm, 𝐿1 =  𝐿4  = 7.3944  mm and 𝐿2 =  𝐿3 = 7.3074 

mm. With these new parameters, the impedance values (which are emulated by the three-slab 

structure) are now in agreement with the desired impedance values to three significant figures. 

This optimized structure is used to produce the results shown in Fig. 2d from the main text. 

 

 

Parameter T-circuit Three-slab structure with 

initial parameters 

Optimized three-slab 

structure 

𝐴 0.6409 0.5674 0.6396 

𝐵 −1.474𝑖𝑍0 −1.459𝑖𝑍0 −1.476𝑖𝑍0 

𝐶 −0.3998𝑖

𝑍0

 
−0.4646𝑖

𝑍0

 
−0.4003𝑖

𝑍0

 

𝐷 0.6409 0.5674 0.6396 

Γ 0.3906 − 0.2671𝑖 0.3836 − 0.2262𝑖 0.3914 − 0.2668𝑖 

𝑇 0.4974 + 0.7271𝑖 0.4548 + 0.7712𝑖 0.4961 + 0.7277𝑖 

𝑍𝑠1 −0.9𝑖𝑍0 −0.9311𝑖𝑍0 −0.9002𝑖𝑍0 

𝑍𝑠2 −0.9𝑖𝑍0 −0.9311𝑖𝑍0 −0.9002𝑖𝑍0 

𝑍𝑝 2.5𝑖𝑍0 2.152𝑖𝑍0 2.498𝑖𝑍0 

Table S1. EM response of the ideal T-circuit, three-slab structure and optimized three slab structure. The ABCD 

parameters, reflection and transmission coefficients are presented for the ideal T-circuit, the initial three-slab structure 

and the optimized three-slab structure are presented in columns 2, 3 and 4 respectively. The impedance values used 

to calculate the ideal T-circuit response and the calculated impedance values of the initial and optimized three-slab 

structure are presented in the bottom three rows of columns 2, 3 and 4 respectively.   



4 Method for calculating the theoretical 𝑯𝒛-field at the junctions of metatronic circuits 

Consider an arbitrary sized network of series junctions between T-circuits, as is presented in Fig. 

2 of the main text. Such a network can be decomposed into two sets of components: 1) the junctions 

and 2) the T-circuits connecting the junctions together. Both components can be characterized by 

a scattering matrix 𝐴, with 𝐴𝐽  and 𝐴𝑇  as the scattering matrix of the junctions and T-circuits 

respectively. The scattering matrix relates the vector of incident signals 𝑥 = [𝑥1,𝑥2,…𝑥𝑁]𝑇 to the 

vector of output signals 𝑦 = [𝑦1 ,𝑦2 ,…𝑦𝑁]𝑇 , where the superscript 𝑇  indicates the transpose 

operation and 𝑁 is the number of inputs/outputs of the scattering matrix (i.e. 𝑁 = 2 and 𝑁 = 4 for 

the 𝑇-circuits and junctions respectively). As mentioned in the main text, in this work the filling 

materials and dimensions of all waveguides is the same (i.e. the characteristic impedance of all 

waveguides is the same). When this is the case, as it has been shown in previous works64,65,66,70, 

the scattering matrix of a series junction (considering ideal interconnected TLs) is given by 𝐴𝐽 =

𝐼 − 𝛾𝐽, where 𝐼 , 𝐽 are the 4×4 identity and all-ones matrices, respectively and 𝛾 = 1 2⁄  is the 

transmission coefficient of the structure. The scattering matrix of the T-circuit is found from its 

ABCD parameters after substituting the emulated impedance values, using the method described 

in section S3. It is important to note that if the PDE to be solved is inhomogeneous, such as the 

case presented in Fig. 4d from the main text, the scattering matrix will vary between T-circuits. 

Due to this it is important to define to which junctions the T-circuits are connected.  

Once the scattering matrices have been constructed and the connections between them have 

been defined, the behavior of the total network is solved by systematically combining the 

scattering matrices of connected structures (junctions and T-circuits), until all the junctions and 

T-circuits are included into one final scattering matrix that describes the whole system. To 

better visualize this, the signal flow graph3 for a small section of the network (a four-way 



junction and a single connected T-circuit, to the right, as seen in the insert of Fig. S4a) is 

presented in Fig. S4a. The inputs and outputs seen at the waveguide junction are represented by 

the nodes labeled 𝑥𝑎 and 𝑦𝑎, respectively, where 𝑎 = 1, 2, 3, 4 is representative of the direction 

from which the signals arrive or are depart towards (up, right, down, and left, respectively). The 

arrows between nodes represent the connections between inputs and outputs. The remaining 

arrows represent the external connections between the displayed structure and the rest of the 

network. The scattering of signals between the inputs and outputs of the four-way junction form 

the octagon shaped section of the signal flow diagram. The nodes within the black dashed box 

represent the T-circuit connected to the right of the scattering matrix and the terms 𝑥′2 and 𝑦′2 

represent the input/output signals at the righthand side of the T-circuit. An observation node is 

also included (grey circle), which is a purely mathematical tool used to observe the signals 

propagating away from the junction so that the current around the junction 𝐼0 may be recorded. 

The overall scattering matrix of the junction and T-circuit structure can then be found by 

systematically implementing the signal flow graph decomposition rules3 to eliminate 

unnecessary nodes from the diagram and, in doing so, constructing a new scattering matrix for 

the combined structure 𝑨′  with inputs and outputs vectors as 𝒙′  and 𝒚′ , respectively. An 

example of this is presented in Fig. S4b where the calculation the 𝐴′22 term of the combined 

scattering matrix is shown. The leftmost panel shows a reduced signal flow diagram for the T-

circuit (inside the dashed box in Fig. S4a) and input/output 2 of the scattering matrix. For 

clarity, connections not involved in the calculation of 𝐴′22  are replaced with grey arrows. 

Between the left panel and the middle panel from the same Fig. S4b, the loop created between 

the 𝑆11 term of the T-circuit and the 𝐴22 term of the junction, is reduced to a single connection. 

This is to enable the representation of the total reflection between the T-circuit and junction. 



As observed, this new connection is also part of another loop consisting of itself, and the 𝑆21, 

𝑆12  terms of the T-circuit. This means that this final loop can be reduced into the final 

connection 𝐴′22 shown on the right panel from Fig. S4b, which describes the total reflection by 

the combined T-circuit and junction structure. 

A visual representation of this algorithm is presented in Fig. S5. In this example the algorithm 

is applied to a 2×2 network of junctions, shown in Fig. S5a. In this schematic, the scattering matrix 

of the junctions 𝑨𝐽 and T-circuits 𝑨𝑇 are represented by the black and blue boxes, respectively. To 

demonstrate the generality of this method, each T-circuit is assigned an individual scattering 

matrix 𝑨𝑇𝑎
 with 𝑎 = 1, 2, 3, 4 representing the top, right, bottom and left T-circuits, respectively. 

Connections between the scattering matrices are depicted by grey arrows. As the algorithm is 

applied, connected scattering matrices are combined into and replaced by the scattering matrix 𝑨′. 

This can be seen in Fig. S5b, which shows the structure after one combination between the 

scattering matrices of the top-left junction (𝑨𝐽) and the top T-circuit (𝑨𝑇1
), seen in Fig. S5a. 

Importantly, 𝑨′ inherits the connections from both the scattering matrices used to construct it. This 

can also be seen in Fig. S5b where 𝑨′ is connected to both the left T-circuit (inherited from the top 

left junction) and the top-right junction (inherited from the top T-circuit). This process is repeated, 

with each step adding a new scattering matrix to the overall structure and, in doing so, a new 𝑨′ is 

constructed at each stage. For example, in the next step, the scattering matrix 𝑨′, is combined with 

the scattering matrix of the top-right junction 𝑨𝐽, and a new 𝑨′, is constructed that includes the 

three scattering matrices from the top row of Fig. S5a. The structure after 6 iterations is presented 

in Fig. S5c. Here, all scattering matrices, except the bottom-right junction, have been added into 

the combined scattering matrix 𝑨′. This iteration is significant as it highlights the scenario where 



there is more than one connection between the combined scattering matrix 𝑨′ and the scattering 

matrix to be added at the next step (the scattering matrix of the bottom right junction). 

 
Fig. S4.  Waveguide junction signal flow diagram. (a), Signal flow diagram showing the splitting and superposition 

of signals at a series junction and a connected T-circuit (see insert). The nodes within the dashed box are representative 

of the T-circuit while the remaining nodes represent the four-waveguide junction. The incident and outgoing signals 

at the junction are labeled as 𝑥 and 𝑦, respectively, with the numbered subscript indicating from which adjacent 

junction the signals arrive from (1 up, 2 right, 3 down and 4 left). 𝑥′2 and 𝑦′2 indicate the signals from the righthand 

junction which are separated from the main junction by the T-circuit. Signal flow routes around the junction are color 

coordinated to indicate which adjacent junction they connect to (green up, black right, orange down and blue left). (b), 

Schematic example of the signal flow diagram associated with the T-circuit may be combined with the 4-way junction 

to construct a combined signal flow diagram. 

 

 

A general example of this scenario is also presented in Fig. S5d. Here, two systems described 

by the scattering matrices 𝑨′  and 𝑨  share 𝑀  connections. These systems also have 𝑁′  and 𝑁 

external input/output waveguides, respectively. This means that, in this scenario, 𝑨′ and 𝑨 will 

consist of (𝑁′ + 𝑀) × (𝑁′ + 𝑀)  and (𝑁 + 𝑀) × (𝑁 + 𝑀)  terms, respectively. Likewise, the 



input and output vectors 𝒙, 𝒙′ and 𝒚, 𝒚′ consist of 𝑁′ + 𝑀 and 𝑁 + 𝑀 terms for the dashed and 

undashed vectors respectively. When constructing 𝒙, 𝒙′ 𝒚 and 𝒚′, the terms of the vectors are 

arranged such that the elements 𝑥𝑎 , 𝑥′𝑎 , 𝑦𝑎  and 𝑦𝑎
′  for 𝑎 = 1 ,2,…,𝑀  are input/output signals 

from/towards a connection between the two systems. Additionally, care is taken so that for each 

𝑎 , 𝑥𝑎 , 𝑥′𝑎 , 𝑦𝑎  and 𝑦𝑎
′  are signals from/towards the same connection for both the dashed and 

undashed terms. The remaining 𝑁′ and 𝑁 term of 𝒙′, 𝒚′ and 𝒙, 𝒚 respectively, are then the external 

inputs/outputs of each system. With this labeling convention, the terms of the output vectors 𝒚 and 

𝒚′ may be rewritten as 

 

 

𝑦′𝑗′ = ∑ 𝑨′𝑗′,𝑎1
𝑥′𝑎1

𝑀

𝑎1=1
+ ∑ 𝑨′𝑗′,𝑎2

𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1
 

(S9a) 

 
𝑦𝑗 = ∑ 𝑨𝑗,𝑏1

𝑀

𝑏1=1
𝑥𝑏1

+ ∑ 𝑨𝑗,𝑏2
𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1
 

(S9b) 

 

where 𝑗′ = 1, 2, … 𝑁′ + 𝑀 and 𝑗 = 1, 2, … 𝑁 + 𝑀  is the output number of the outgoing signals 

from the dashed and undashed system, respectively. In Eq. S9a,b, the first and second terms 

describe the scattering towards an output due to signals originating from a connection and from an 

external input, respectively. Due to the connections between scattering matrices and the vector 

ordering described above, the first 𝑀 outputs of the dashed system then become the first 𝑀 inputs 

of undashed system and vice versa. This may be expressed as 

 

 𝑥′𝑚 = 𝑦𝑚 (S10a) 

 𝑥𝑚 = 𝑦′𝑚 (S10b) 

when 𝑚 = 1, 2, … 𝑀. Considering Eq. S10, Eq. S9 can be rewritten as follows. 



 

𝑦′𝑗′ = ∑ 𝑨′𝑗′,𝑎1
𝑦𝑎1

𝑀

𝑎1=1
+ ∑ 𝑨′𝑗′,𝑎2

𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1
 

(S11a) 

 
𝑦𝑗 = ∑ 𝑨𝑗,𝑏1

𝑀

𝑏1=1
𝑦′𝑏1

+ ∑ 𝑨𝑗,𝑏2
𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1
 

(S11b) 

 

Importantly, as the two systems are linked, Eq. S11a appears in the first term of Eq. S11b when 

𝑗′ = 𝑏1 = 1 to 𝑀. Likewise, Eq. S11b appears in the first term of Eq. S11a for 𝑗 = 𝑎1 = 1 to 𝑀. 

Eq. S11a and Eq. S11b are then combined to give: 

 

𝑦′𝑗′ = ∑ ∑ 𝑨′𝑗′,𝑎1
𝑨𝑎1,𝑏1

𝑦′𝑏1

𝑀

𝑏1=1

𝑀

𝑎1=1

+ ∑ ∑ 𝑨′𝑗′,𝑎1
𝑨𝑎1,𝑏1

𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1
+ ∑ 𝑨′𝑗′,𝑎2

𝑀+𝑁′

𝑎2=𝑀+1
𝑥′𝑎2

𝑀

𝑎1=1
 

(S12a) 

𝑦𝑗 = ∑ ∑ 𝑨𝑗,𝑏1
𝑨′𝑏1,𝑎1

𝑦𝑎1

𝑀

𝑎1=1
+ ∑ ∑ 𝑨𝑗,𝑏1

𝑨′𝑏1,𝑎2
𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1

𝑀

𝑏1=1

𝑀

𝑏1=1

+ ∑ 𝑨𝑗,𝑏2
𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1
 

(S12b) 

which are a pair of simultaneous equations that may be solved to obtain 𝑦′ and 𝑦 in terms of the 

input signals and scattering matrix coefficients only. To do this we define two 𝑀 ×  𝑀 matrices 

𝑩′ and 𝑩 as: 

 

 
𝑩′𝑚′,𝑚 = ∑ 𝑨′𝑚′,𝑐𝑨𝑐,𝑚

𝑀

𝑐=1
 

(S13a) 

 
𝑩𝑚,𝑚′ = ∑ 𝑨𝑚,𝑐𝑨′𝑐,𝑚′

𝑀

𝑐=1
 

(S13b) 

where 𝑚′ = 1 , 2 , … 𝑀 . By Substituting the terms of 𝑩′  and 𝑩  into Eq. 12a and Eq. 12b, 

respectively, the output signals in the connecting waveguides (waveguides 1 to 𝑀) are expressed 

as: 



𝑦′𝑗′ = ∑ ∑ ∑ (𝑰 − 𝑩′)𝑗′,𝑐
−1 𝑨′𝑐,𝑎1

𝑨𝑎1,𝑏2
𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1

𝑀

𝑎1=1

𝑀

𝑐=1

+ ∑ ∑ (𝑰 − 𝑩′)𝑗′,𝑐
−1 𝑨′𝑐,𝑎2

𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1

𝑀

𝑐=1
 

 

 

(S14a) 

𝑦𝑗 = ∑ ∑ ∑ (𝑰 − 𝑩)𝑗,𝑐
−1𝑨𝑐,𝑏𝑨′𝑏,𝑎2

𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1

𝑀

𝑏1=1

𝑀

𝑐=1

+ ∑ ∑ (𝑰 − 𝑩)𝑗,𝑐
−1

𝑀+𝑁

𝑏2=𝑀+1
𝑨𝑐,𝑏2

𝑥𝑏2

𝑀

𝑐=1
 

 

 

(S14b) 

where 𝑰 is the identity matrix with size 𝑀 × 𝑀. Substituting the expressions from Eq. S14a and 

Eq. S14b into Eq. S11b and Eq. S11a, respectively, gives the equations for the external outputs of 

either system as: 

 

 

𝑦′(𝑀+𝜈′) = ∑ [𝑨′
(𝑀+𝜈′),𝑎2

𝑀+𝑁′

𝑎2=𝑀+1

+ ∑ ∑ ∑ 𝑨′
(𝑀+𝜈′),𝑎1

(𝑰 − 𝑩)𝑎1,𝑐
−1 𝑨𝑐,𝑏1

𝑨′
𝑏1,𝑎2

]
𝑀

𝑏1=1

𝑀

𝑐=1

𝑀

𝑎1=1
𝑥′𝑎2

+ ∑ ∑ ∑ 𝑨′
(𝑀+𝜈′),𝑎1

(𝑰 − 𝑩)𝑎1,𝑐
−1 𝑨𝑐,𝑏2

𝑥𝑏2

𝑀+𝑁

𝑏2=𝑀+1

𝑀

𝑐=1

𝑀

𝑎1=1
 

 

 

 

 

(S15a) 

𝑦(𝑀+𝜈) = ∑ [𝑨(𝑀+𝜈),𝑏2

𝑀+𝑁

𝑏2=𝑀+1

+ ∑ ∑ ∑ 𝑨(𝑀+𝜈),𝑏1
(𝑰 − 𝑩′)𝑏1,𝑐

−1 𝑨′
𝑐,𝑎1

𝑨𝑎1,𝑏2

𝑀

𝑎1=1

𝑀

𝑐=1

𝑀

𝑏1=1
]𝑥𝑏2

+ ∑ ∑ ∑ 𝑨(𝑀+𝜈),𝑏1
(𝑰 − 𝑩′)𝑏1,𝑐

−1 𝑨′𝑐,𝑎2
𝑥′𝑎2

𝑀+𝑁′

𝑎2=𝑀+1

𝑀

𝑐=1

𝑀

𝑏1=1
 

 

 

(S15b) 

 



where 𝜈′ = 1, 2, … 𝑁′ and 𝜈 = 1, 2, … 𝑁 are the external input/output numbers of the dashed and 

undashed systems, respectively. The matrix elements for the combined scattering matrix of the 

structure are then extracted from Eq. S15. In this instance, the combined scattering matrix (between 

Eq. S15a and Eq. S15b) is written as 𝑨′′ to avoid confusion with the input matrix 𝑨′.  However, as 

detailed above, when combining multiple scattering matrices sequentially to calculate the 

scattering matrix of the entire network, 𝑨′′ would take the place of 𝑨′ in subsequent calculations. 

This process is shown in Fig. S5a-c. The input and output vectors of 𝑨′′  are 𝒙′′ =

[𝑥′′
1,𝑥′′

2,… 𝑥′′
𝑁+𝑁′]𝑇 and 𝒚′′ = [𝑦′′1,𝑦′′2,…,𝑦′′𝑁+𝑁′]𝑇. These are vectors contains the combined 

external input/output terms from 𝒙, 𝒙′ and 𝒚, 𝒚′, respectively. In this formulation the first 𝑁′ terms 

of 𝒙′′ and 𝒚′′ are the terms of 𝒙′ and 𝒚′ (ordered 1, 2, … 𝑁′) and the remaining 𝑁 terms represent 

the terms of 𝒙  and 𝒚  (ordered 1, 2, … 𝑁 ), respectively (i.e. 𝑥′′𝜈′ = 𝑥′(𝜈′+𝑀) ,   𝑦′′𝜈′ =

𝑦′(𝜈′+𝑀),  𝑥′′(𝜈+𝑁′) = 𝑥(𝜈+𝑀) and 𝑥′′(𝜈+𝑁′) = 𝑥(𝜈+𝑀)). The individual terms of 𝑨′′ are then written 

as:  



𝑨′′𝜈′,𝜈2
′ = 𝑨′(𝑀+𝑛′),(𝑀+𝑛2

′

+ ∑ ∑ ∑ 𝑨′
(𝑀+𝜈′),𝑎1

(𝑰 − 𝑩)𝑎1,𝑐
−1 𝑨𝑐,𝑏1

𝑨′𝑏1,(𝑀+𝜈2
′ )

𝑀

𝑏1=1

𝑀

𝑐=1

𝑀

𝑎1=1
 

(S16a) 

𝑨′′𝜈′,(𝜈+𝑁′) = ∑ ∑ 𝑨′
(𝑀+𝜈′),𝑎1

(𝑰 − 𝑩)𝑎1,𝑐
−1 𝑨𝑐,(𝑀+𝜈)

𝑀

𝑐=1

𝑀

𝑎1=1
 

(S16b) 

𝑨′′(𝑛+𝑁′),𝑛′ = ∑ ∑ 𝑨(𝑀+𝑛),𝑏1
(𝑰 − 𝑩′)𝑏1,𝑐

−1 𝑨′𝑐,(𝜈′+𝑀)

𝑀

𝑐=1

𝑀

𝑏1=1
 

(S16c) 

𝑨′′(𝜈+𝑁′),(𝜈2+𝑁′)

= 𝑨(𝑀+𝜈),(𝑀+𝜈2)

+ ∑ ∑ ∑ 𝑨(𝑀+𝜈),𝑏1
(𝑰 − 𝑩′)𝑏1,𝑐

−𝟏 𝑨′𝑐,𝑎1
𝑨𝑎1,(𝜈2+𝑀)

𝑀

𝑎1=1

𝑀

𝑐=1

𝑀

𝑏1=1
 

 

(S16d) 

 

 

 



 
Fig. S5.  Schematic representation of the algorithm used to solve for the theoretical results of current/H-field 

distribution. (a) Initial state of a 2 × 2 network to be solved by the scattering matrix combining algorithm. The 

waveguide junctions and T-circuits are modelled as 4 × 4 and 2 × 2 scattering matrices 𝑨𝐽  and 𝑨𝑇𝑎
, respectively, 

represented by black and blue boxes. 𝑎 = 1, 2, 3, 4 is the T-circuit number, in this case referring to the top, right, 

bottom, and left T-circuits of the structure, respectively. (b) State of the network after one scattering matrix 

combination. The scattering matrix of the top-left junction has been combined with the scattering matrix of the top T-

circuit. In doing so, the combined scattering matrix of the two structures is constructed. 𝑨′, inheriting the connections 

from both scattering matrices. (c) State of the network, after the penultimate iteration. Here, all but the scattering 

matrix of the bottom-right junction have been combined into the overall scattering matrix 𝑨′. In this scenario, 𝑨′ is 
connected to the scattering matrix to be added 𝑨, by 2 connections, one left of and one above 𝑨. (d) General case of 

two scattering matrices connected by an arbitrary number of connections. Here the scattering matrices 𝑨′ and 𝑨 are 

connected by 𝑀 reciprocal connections, represented by the grey arrows between the two black boxes. 𝑨′ and 𝑨 have 

𝑁′ and 𝑁 input/outputs respectively, which do not connect the two scattering matrices, represented by the grey arrows 

above and below the box. 

 

 

 

 

 

 

 

 

 



5 Impact of manufacturing tolerance on the calculated PDE solution 

5.1 Changing 𝑍𝑠 and 𝑍𝑝  from ideal values: 

The structures discussed in the main text have considered defined values of 𝑍𝑠  and 𝑍𝑝 . In 

practice, these values may diverge from the ideal values due to potential manufacturing 

tolerances. To investigate the impact of these tolerances and the error associated to the PDE 

solution, it is important to consider how perturbations in 𝑍𝑠 and 𝑍𝑝 around their ideal values 

impact the observed values of ℎ and 𝑘  i.e. 𝑍𝑠 → 𝑍𝑠 + ∆𝑍𝑠 , 𝑍𝑝 → 𝑍𝑝 + ∆𝑍𝑝 , ℎ → ℎ + ∆ℎ and 

𝑘 → 𝑘 + ∆𝑘 , where ∆𝑍𝑠 , ∆𝑍𝑝 , ∆ℎ  and ∆𝑘  are the amounts by which 𝑍𝑠 , 𝑍𝑝 , ℎ  and k are 

perturbed, respectively. Using ℎ = 1 |𝑍𝑝|⁄  and 𝑘 = √−4𝑍𝑠𝑍𝑝
∗  from the main text, the values of 

∆ℎ and ∆𝑘 can be defined as, respectively. 

 
∆ℎ ≈ −

∆𝑍𝑝

𝑍𝑝
2

 
(S17a) 

 
∆𝑘 ≈

1

√−𝑍𝑠𝑍𝑝
∗

(𝑍𝑠∆𝑍𝑝 + 𝑍𝑝
∗∆𝑍𝑠) 

(S17b) 

 

The results from these expressions are shown in Fig. S6 in which the values of ∆ℎ and ∆𝑘 have 

been calculated for ∆𝑍𝑠  and ∆𝑍𝑝  between −5% and +5% of 𝑍𝑠  and 𝑍𝑝 , respectively. In this 

scenario 𝑍𝑠 = −0.9𝑖 and 𝑍𝑝 = 2.5𝑖 corresponding to ℎ = 0.4 and 𝑘 = 3. Additionally, Fig. S6c 

shows the RMSE between the perturbed and unperturbed theoretical PDE solutions. As it can 

be seen, there are non-zero combinations of ∆𝑍𝑠 and ∆𝑍𝑝 which produce solutions similar to 

Δ𝑍𝑠 = 0 and Δ𝑍𝑝 = 0, despite using different values of ℎ and 𝑘. This occurs when the value of 

1/(ℎ𝑘) is kept constant between the set of solutions. 



 
Fig. S6.  Impact of perturbations in 𝑍𝑠 and 𝑍𝑝.  (a-b) calculated ∆ℎ and ∆𝑘 value for ∆𝑍𝑠 and ∆𝑍𝑝 values within 5% 

of 𝑍𝑠  and 𝑍𝑝 , respectively. These results are calculated when 𝑍𝑠 = −0.9𝑖  and 𝑍𝑝 = 2.5𝑖 . (c) Calculated RMSE 

between the theoretical PDE solutions of the perturbed and unperturbed structures. 

 

Now using Eq. S17 the distribution of ℎ and 𝑘 values seen in a system with impedance 

tolerances can be calculated. To do this we initially consider an equal probability distribution 

of impedances between 𝑍𝑠,𝑝 − 𝛿𝑍𝑠,𝑝 and 𝑍𝑠,𝑝 + 𝛿𝑍𝑠,𝑝 where 𝛿𝑍𝑠,𝑝 is the tolerance of 𝑍𝑠 and 𝑍𝑝, 

respectively. The joint probability distribution of ℎ and 𝑘 due to the presence of 𝛿𝑍𝑠 and 𝛿𝑍𝑝 

is then calculated. This can be seen in Fig. S7a when 𝛿𝑍𝑠 and 𝛿𝑍𝑝 are chosen to be 5% of 𝑍𝑠 

and 𝑍𝑝, respectively. Here, ℎ and 𝑘 values are calculated for 1000 equally spaced values of 𝑍𝑠 

and 𝑍𝑝 within the tolerance range. The number of combinations which produce similar ℎ and 𝑘 

values are then counted. As it can be seen, since Δℎ is a linear function of Δ𝑍𝑝 only, the equal 

distribution of 𝑍𝑝 values also translate to an equal distribution in ℎ values. This means that a 

5% tolerance in 𝑍𝑝 will produce ℎ values within 5% of the desired value. Since Δ𝑘 depends on 

both Δ𝑍𝑠 and Δ𝑍𝑝, the joint distribution of the two impedances produces a spread of 𝑘 values 

centered around the desired value (𝑘 = 3 in this case). The standard deviation (STD) of the 𝑘 

value is then calculated for a range of tolerance values and is show in Fig. S7b. From these 

results, for instance, if the impedance tolerance was 5% one would expect to measure ℎ and 𝑘 

values within the ranges ℎ = [0.38,0.42] and 𝑘 = [2.63,3.37], respectively. 



 
Fig. S7.  Distribution of ℎ and 𝑘 values with impedance tolerances. (a) 2D histogram showing the distribution of ℎ 

and 𝑘 values around ℎ = 4 and 𝑘 = 3 when 𝑍𝑠 and 𝑍𝑝 is allowed to vary by 5% around 𝑍𝑠 = −0.9𝑖 and 𝑍𝑝 = 2.5𝑖. 

(b) Calculated standard deviation of 𝑘 value from the 𝑘 distribution for tolerance levels from 0% to 5%. 

5.2 Geometry tolerances: 

As shown in the main text, 𝑍𝑠 and 𝑍𝑝 may be emulated by controlling the geometric parameters 

and electromagnetic properties of the three-slab structure shown in Fig. 1b. These parameters 

are 𝐿1, 𝐿2, 𝐿3,𝐿4, 𝑤𝑠1, 𝑤𝑠2,𝑤𝑝, 𝜀𝑠1, 𝜀𝑠2 and 𝜀𝑝. One alternative method for evaluating the error 

and the ℎ  and 𝑘  distribution is to consider the impact of tolerances on these underlying 

parameters/properties. This is different than the study presented above as in this scenario it is 

expected that there will no longer be an equal distribution of 𝑍𝑠 and 𝑍𝑝 values. Similar to the 

study above, 𝐿1, 𝐿2, 𝐿3,𝐿4, 𝑤𝑠1, 𝑤𝑠2,𝑤𝑝, 𝜀𝑠1, 𝜀𝑠2 and 𝜀𝑝 are now allowed to vary by 𝛿𝐿1, 𝛿𝐿2, 

𝛿𝐿3,𝛿𝐿4, 𝛿𝑤𝑠1, 𝛿𝑤𝑠2,𝛿𝑤𝑝, 𝛿𝜀𝑠1, 𝛿𝜀𝑠2 and 𝛿𝜀𝑝, respectively, around the desired values. For this 

study, the parameters and properties described in Fig. 2d from the main text are chosen as the 

desired values (i.e. ℎ = 0.4003, 𝑘 = 2.999). Due to the large parameter space (10 variables in 

total) the ℎ  and 𝑘  distribution is then evaluated by selecting 100000  randomly chosen 



combinations of parameters within the parameter space and counting the combinations which 

produce similar values of ℎ and 𝑘. The results of which can be seen in Fig. S8a when 𝛿𝐿1, 𝛿𝐿2 

… 𝛿𝜀𝑝  are 5%  of the desired value. The mean value and standard deviation of these 

distributions is then evaluated by using a gaussian and skewed gaussian fit77 for the for the ℎ 

and 𝑘 distributions respectively. Fig. S8b shows the normalized fits for tolerance values from 

1% to 5%. These fits are normalized such that the integral of each curve (representing the total 

number of sampling points) is the same in each plot. Finally, the extracted mean and standard 

deviation values of ℎ and 𝑘 are show in Fig. S8c. These results show that for a tolerance value 

of 5%  on the underlying T-circuit parameters/properties one would expect ℎ  and 𝑘  values 

within the range ℎ = [0.36,0.44] and 𝑘 = [2.9,3.1], respectively. 

 
Fig. S8.  Distribution of ℎ and 𝑘 values using tolerances on T-circuit parameters and properties. (a) 2D histogram 

showing the distribution of ℎ and 𝑘 values around ℎ = 0.4003 and 𝑘 = 2.999 when the T-circuit parameters and 

properties (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝑤𝑠1, 𝑤𝑠2, 𝑤𝑝, 𝜀𝑠1, 𝜀𝑠2, 𝜀𝑝) are allowed to vary by 5% around their desired values (𝐿1 =

𝐿4 = 7.394  mm, 𝐿2 = 𝐿3 = 7.307  mm, 𝑤𝑠1 = 𝑤𝑠2 = 0.2111  mm, 𝑤𝑝 = 0.1911  mm, 𝜀𝑠1 = 𝜀𝑠2 = 21.5  and 𝜀𝑝 =

12). (b) Normalized fitted distribution of ℎ (left) and 𝑘 (right) for tolerances from 1% to 5%. (c) Calculated mean 

(top-panels) and standard deviation (bottom-panels) of the fitted ℎ (left) and 𝑘 (right) distributions for tolerances from 

1% to 5%. 

 



6 Time domain convergence of PDE solution 

One important metric to describe the performance of the PDE solving structure is the 

convergence time 𝑡𝑐. This is here defined as the time it takes for the PDE solving structure to 

reach a steady state solution. This can be quantified by calculating the rate of change in the 

signal observed at the waveguide junctions as: 

 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 =
𝑑

𝑑𝑡
( ∑ |𝐻𝑦|

𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

) 

(S18) 

where 𝐻𝑦 is the out-of-plane 𝐻-field calculated at the junction centers and the sum covers all 

junctions within the waveguide network. 𝑡𝑐  is then the time it takes for 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒  to 

approach 0 (while ignoring the trivial 𝐻𝑦 = 0 case), within a certain tolerance value.  

To investigate this, a time-domain numerical study of the structure presented in Fig. 2d 

of the main text was performed using the transient solver from CST Studio Suite®. Here, at 

time 𝑡 = 0 a monochromatic 10 GHz input signal is excited at the top-left waveguide of the 

top-left junction. The out-of-plane 𝐻𝑦 field is then recorded at the center of each of the 625 

junctions and used to calculate the convergence value. The simulation is run for 50 ns from the 

initial excitation to allow it to reach steady state. As examples, the normalized |𝐻𝑦| values 

measured at 3 points 𝑃1, 𝑃2 and 𝑃3 are shown in Fig. S9b. The location of these probe in the 

PDE solving structure can be seen in Fig. S9a. 𝑃1 is the top-left boundary junction, 𝑃2 is 15 

junctions along and down from 𝑃1  and 𝑃3  is the bottom-right boundary junction (junction 

farthest from the input junction). Fig. S9c shows the 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value calculated from Eq. 

S18 and then normalized with respect to the maximum value. 

It is expected that the convergence time of the PDE solving structure will depend 

primarily on the size of the network as the EM signals will take more time to propagate 



throughout. This can be seen in Fig. S9b where 𝑃2 and 𝑃3 show initially zero out-of-plane 𝐻-

field before the signal from 𝑃1 arrives at the junction. This initial propagation time can also be 

seen in Fig. S9c where the initial rapid growth in 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value is indicative of the input 

signal spreading throughout the network. The maximum 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value then occurs at ≈

5 𝑛𝑠, which is the theoretical time it takes for a signal to propagate from the top-left to the 

bottom-right junction when accounting for the lack of diagonal paths. After this, the 

𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 value of the structure begins to decrease as the structure settles into the solution 

shown in Fig. 2d in the main text until after 𝑡𝑐 ≈ 30 ns there is little change in the PDE profile. 

It is worth noting that this calculated value of 𝑡𝑐 is specific to the waveguide network from Fig. 

2d waveguide network ( 25 × 25 , designed to work at 10 GHz) and would need to be 

recalculated if the size, shape or operating frequency is changed. However, it is expected that 

changing the impedance values of the metatronic elements would not have a significant impact 

on 𝑡𝑐  as the dielectric slabs used to implement the impedances are thin (in the direction of 

propagation) compared to the waveguide in which they are embedded. 

 
Fig. S9.  Time domain convergence of structure from Fig. 2d. (a) Location of the three probes 𝑃1, 𝑃2 and 𝑃3. (b) 

Calculated out-of-plane 𝐻𝑦-field at 𝑃1, 𝑃2 and 𝑃3 as a function of time. (c) Normalized convergence plot of the total 

𝐻𝑦-field present in the structure 

 



7 Index of supplementary movies 

➢ Supplementary Movie 1: Animation of Fig. 2d from the main text. 

➢ Supplementary Movie 2: Animation of Fig. 2e from the main text. 

➢ Supplementary Movie 3: Animation of Fig. 3b from the main text.  

➢ Supplementary Movie 4: Animation of Fig. 3d from the main text. 

 


